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Abstract: This paper is concerned with the problem of robust exponential stabilization for a class of uncertain
hybrid systems with mixed time-varying delays in both the state and control. By using a Lyapunov-Krasovskii
functional, a memoryless switching controller design is proposed to guarantee the global exponential stabilization.
Based on matrix inequality technique, we establish some new delay-dependent exponential stabilization criteria for
the system. Finally, some numerical examples are presented to illustrate the effectiveness of the theoretical results.
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1 Introduction
Time-delay phenomenon appears in many practical
systems, such as AIDS epidemic, aircraft stabiliza-
tion, chemical engineering system, inferred grinding
model, manual control, neural network, nuclear re-
actor, population dynamical model, rolling mill, ship
stabilization, and its existence is frequently a source
of oscillation and instability [1,2]. In view of this, the
stability issue of time-delay systems is a topic of the-
oretical and practical importance which has attracted
a lot of interest over the decades [3-8].

Studies on dynamic systems with complicated
switching law which are called switched systems have
arisen in various disciplines of science and engineer-
ing in recent years [5-15]. Switched system usually
consists of a family of subsystems of differential or
difference equations and a rule that determines which
subsystem is activated at a certain time interval. A
different switching rule would produce different be-
havior of the system and hence lead to different sys-
tem performances. Just owing to the complication of
designing switching law for the systems, the stabil-
ity analysis of switched systems becomes more diffi-
cult and attracts the interest of several scientists. To
date, a number of works on the stability and stabiliza-
tion for switched systems have appeared recently [5-
11]. In the study on stability analysis for switched
systems, multiple Lyapunov functions approach has
been shown to be an effective tool [12-14]. Most re-
cently, on the basis of dwell time analysis method,
the stability and stabilization for switched systems

have been further investigated [15-18]. The main
approach for stability analysis relying on the use of
Lyapunov-Krasovskii functional and linear matrix in-
equality (LMI) has been presented in [10, 19-24].

It is interesting to note that the stability for each
subsystem cannot imply that of the overall system un-
der arbitrary switching signal [9]. Another interesting
fact is that the stability of a switched system can be
achieved by choosing the switching signal even when
each subsystem is unstable [6, 7, 9-11]. Although
some important results have been obtained for lin-
ear/nonlinear switched systems, there are few results
concerning the stability of switched nonlinear systems
with time delay and uncertainties. In [25], the prob-
lem of stabilization via state feedback and/or state-
based switching for switched linear systems with mul-
tiple time-varying delays without uncertainties was
considered. It was proved in [25] that the switched
linear delay system will be stabilizable via state feed-
back and/or switching if the corresponding system
with zero delays has a Hurwitz stable convex com-
bination and the delays less than an appropriate upper
bound that satisfies a set of LMIs. On the other hand,
it is worth noting that the existing stability conditions
for time-delay systems must be solved upon a grid of
the parameter space, which results in testing a nonlin-
ear Riccati-type equation or a finite number of LMIs.
In this case, the results using finite gridding points are
unreliable and the numerical complexity of the tests
grows rapidly. Therefore, finding new conditions for
the robust exponential stability of uncertain switched
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time-delay systems are of interest.
In [26], the global exponential stability of BAM

neural networks with inertial term and time delay was
investigated. By chosen proper variable substitution
the system was transformed to first order differen-
tial equation. Then some new sufficient conditions
which ensured the globally exponential stability of the
system were obtained by constructing suitable Lya-
punov functional, using Halanay inequality and the
fundamental solution matrix of coefficient matrix. In
[27], by constructing suitable Lyapunov functional,
using differential mean value theorem and homeomor-
phism, the global exponential stability of high-order
bi-directional associative memory (BAM) neural net-
works with reaction-diffusion terms and S-type dis-
tributed delays was analyzed. Some sufficient theo-
rems had been derived under different conditions to
guarantee the global exponential stability of the net-
works.

In this paper, we study the problem of robust ex-
ponential stabilization for a class of uncertain non-
linear hybrid time-delay systems. Based on the
Lyapunov-Krasovskii functional approach and the lin-
ear matrix inequality technique, the switching signal
design method is proposed and delay-dependent stabi-
lization conditions are provided, which guarantee that
the uncertain switched nonlinear systems with time-
varying delays in state and control are exponentially
stablizable.

This paper is organized as follows. Section 2
presents notations, definitions and some technical
lemmas required for the proof of the main results.
Switching design for memoryless feedback controller
for the exponential stabilization is presented in Sec-
tion 3. Some numerical examples are presented in
Section 4. Finally, some conclusion and remarks are
drawn in section 5.

2 Preliminaries
The following notations will be used throughout this
paper. R+ denotes the set of all non-negative real
numbers; Rn denotes the n-finite-dimensional space
with the Euclidean norm ∥ · ∥ and scalar product xT y
or < x, y > of two vectors x, y; λmax(A) ( λmin(A)
,respectively)denotes the maximal (the minimal, re-
spectively) number of the real part of eigenvalues of
A ; AT denotes the transpose of the matrix A ; Rn×m

denotes the set of all (n×m)-matrices with the spec-
tral norm defined by

η(A) =
√
λmax(AAT ).

Q ≥ 0(Q > 0,respectively)means Q is semi-positive
definite (positive definite, respectively), A ≥ B

means A − B ≥ 0, I denotes the identity matrix,
N̄ = {1, 2, · · · , N}.

In the sequel, sometimes for the sake of brevity,
we will omit the arguments of matrix functions, if it
does not cause confusion.

Consider the switched nonlinear system with
time-varying delays:

ẋ(t) = Āσx(t) + D̄σx(t− τ(t)) + Ēσ
∫ t
t−τ(t)

×x(s)ds+ B̄σu(t) + C̄σu(t− r(t))

+F̄σ
∫ t
t−r(t) u(s)ds,

x(t) = ϕ(t), t ∈ [−h, 0],
(1)

where h = max{τ̄ , r̄} and

Āσ = Aσ +∆Aσ(t), D̄σ = Dσ +∆Dσ(t),

Ēσ = Eσ +∆Eσ(t), B̄σ = Bσ +∆Bσ(t),

C̄σ = Cσ +∆Cσ(t), F̄σ = Fσ +∆Fσ(t),

x(t) ∈ Rn is the state at time t, u(t) ∈ Rp is the
control, σ is a switching signal which is a piecewise
constant function and depends on x, σ takes its values
in finite set N̄ , moreover, σ(x) = i implies that the ith
subsystem of system (1) is active. The initial vector
ϕ(t) ∈ C0, where C0 is the set of continuous functions
from [−h, 0] to Rn. The delay functions τ(t), r(t) are
continuous functions satisfying

0 ≤ τ(t) ≤ τ̄ , τ̇(t) ≤ δ < 1, ∀t ≥ 0,
0 ≤ r(t) ≤ r̄, ṙ(t) ≤ δ1 < 1, ∀t ≥ 0.

Matrices Ai, Bi, Ci, Di, Ei, Fi, i ∈ N̄ , are real
constant matrices with appropriate dimensions,
∆Ai(t),∆Bi(t),∆Ci(t),∆Di(t),∆Ei(t),∆Fi(t),
i ∈ N̄ , are some perturbed matrices and satisfy the
following conditions

[∆Ai(t) ∆Bi(t) ∆Ci(t) ∆Di(t) ∆Ei(t) ∆Fi(t)]
= MiJi(t)[NAi NBi NCi NDi NEi NFi],

∀i ∈ N̄ , ∀t ≥ 0,
(2)

where Mi, NAi, NBi, NCi, NDi, NEi and NFi, i ∈
N̄ , are some given constant matrices with appropri-
ate dimensions. Ji(t), i ∈ N̄ , are unknown matrices
representing the parameter perturbations which satisfy

JT
i (t)Ji(t) ≤ I, ∀i ∈ N̄ , ∀t ≥ 0. (3)

Remark 1 The conditions (2) and (3) are referred to
as the admissible conditions. These conditions have
been frequently used to describe parameter uncertain-
ties for systems in many papers that deal with the sta-
bility analysis, see e.g [7,20,21,24,31].
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The stabilization problem for switched system (1)
is to construct a switching rule and feedback control
that make the closed-loop system is exponentially sta-
ble.

Definition 2 [28] Given α > 0. Switched control sys-
tem (1) is exponentially stabilizable with rate α > 0,
if there exist a positive number q, switching rule σ(·)
and feedback control u(t) = Kσx(t) such that every
solution x(t, ϕ) of the closed-loop system satisfies the
following condition:

∥ x(t, ϕ) ∥≤ q ∥ ϕ ∥ e−αt, ∀t ≥ 0,

where
∥ ϕ ∥= sup

−h≤t≤0
∥ ϕ(t) ∥ .

Definition 3 [29] The system of matrices {Li}, i ∈
N̄ , is said to be strictly complete if for every x ∈
Rn\{0} there exists i ∈ N̄ such that xTLix < 0.

Let us define the

ξi = {x ∈ Rn;xTLix < 0}, i ∈ N̄ .

It is easy to show that the system {Li}, i ∈ N̄ , is
strictly complete if and only if

N∪
i=1

ξi = Rn\{0}.

Remark 4 In [29], it is shown that a sufficient condi-
tion for the strict completeness of the system {Li} is

that there exist τi ≥ 0,
N∑
i=1

τi > 0 such that

N∑
i=1

τiLi < 0.

If N = 2 then the above condition is also neces-
sary for the strict completeness.

Lemma 5 (Cauchy matrix inequality) [30] For any
0 < W ∈ Rn×n, x, y ∈ Rn, we have

±2xT y ≤ xTWx+ yTW−1y.

Lemma 6 [31] Let U, V,W and M be real matrices
of appropriate dimensions with M = MT , then

M + UVW +W TV TUT < 0,

for all V TV < I, if and only if there exists a scalar
ε > 0 such that

M + ε−1UUT + εW TW < 0.

Lemma 7 [32] Given constant symmetric matrices
S1, S2, S3 and S1 = ST

1 < 0, S3 = ST
3 > 0, then

S1 + S2S
−1
3 ST

2 < 0 if and only if[
S1 S2

ST
2 −S3

]
< 0.

3 Main result
For given symmetric positive definite matrices
P,Qi ∈ Rn×n, we set

Li = AT
i P + PAi + (1 + h)I +Qi,

Ωi =

{
x ∈ Rn |

xT (AT
i P + PAi + (1 + h)I)x

< −xTQix

}
,

and

Ω̄1 = Ω1, Ω̄i = Ωi\
i−1∪
j=1

Ω̄j .

Now we present a delay-dependent condition for
the global exponential stabilization of system (1).

Theorem 8 Switched nonlinear control system (1) is
globally exponentially stabilizable with rate α >
0, if there exist symmetric positive definite matrices
P,Qi ∈ Rn×n and some positive constants εi >

0, τi > 0 with
N∑
i=1

τi > 0, such that the following LMIs

hold:
N∑
i=1

τiLi < 0, (4)

 Gi(P ) Wi Si

W T
i −ε−1

i I 0
ST
i 0 −εiI

 < 0, i ∈ N̄ , (5)

where

Wi = [PMi µe2αhPMi he2αhPMi

he2αhPMi µ1e
2αhPMi PMi],

(6)

Si = [NT
Ai DiN

T
Di EiN

T
Ei FiN

T
Fi

CiN
T
Ci (NBiB

T
i P )T ],

(7)

Gi(P ) = 2αP −Qi + λ0e
2αh(λ1µ+ λ2h

+ λ3µ1 + λ4h)P
2 + P (µe2αhDiD

T
i

+ he2αhEiE
T
i + µ1e

2αhCiC
T
i

+ he2αhFiF
T
i + (h+ 3)BiB

T
i )P

(8)
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µ = (1− δ)−1, µ1 = (1− δ1)
−1,

λ0 = maxi∈N̄{η2(Mi)}, λ1 = maxi∈N̄{η2(NDi)},
λ2 = maxi∈N̄{η2(NEi)}, λ3 = maxi∈N̄{η2(NCi)},
λ4 = maxi∈N̄{η2(NFi)}.

The switching rule is chosen as σ(x(t)) = i ∈ N̄
whenever x(t) ∈ Ω̄i. The feedback control is

u(t) = BT
σ Px(t), t ≥ 0, (9)

and the solution of the system satisfies

∥ x(t, ϕ) ∥≤ q ∥ ϕ ∥ e−αt, t ∈ R+,

where

q =
√

m
λmin(P ) , λB = maxi∈N̄{η2(Bi)},

m = λmax(P ) + τ̄ + r̄λBλ
2
max(P ) + 1

2h
2

+ 1
2h

2λBλ
2
max(P ).

(10)

Proof: From (4), it follows that the system matrices
{Li} is strictly complete and

N∪
i=1

Ωi = Rn\{0}.

Based on the set Ωi, we construct the set Ω̄i and it is
easily verified that∪N

i=1 Ω̄i = Rn\{0}, Ω̄i
∩
Ω̄j = Ø, i ̸= j.

(11)
The switching rule is chosen as σ(x(t)) = i, when-
ever x(t) ∈ Ω̄i (this switching rule is well defined due
to (11)). So when x(t) ∈ Ω̄i, the ith subsystem is
activated and then we have the following subsystem

ẋ(t) = Āix(t) + D̄ix(t− τ(t)) + Ēi
∫ t
t−τ(t)

× x(s)ds+ B̄iu(t) + C̄iu(t− r(t))

+ F̄i
∫ t
t−r(t) u(s)ds, t ≥ 0.

(12)
We consider the following Lyapunov-Krasovskii
functional

V (x(t)) = V1(·) + V2(·) + V3(·) + V4(·) + V5(·),

where
V1(·) = xT (t)Px(t),

V2(·) =
∫ t

t−τ(t)
e2α(s−t) ∥ x(s) ∥2 ds,

V3(·) =
∫ 0

−h

∫ t

t+s
e2α(v−t) ∥ x(v) ∥2 dvds,

V4(·) =
∫ t

t−r(t)
e2α(s−t) ∥ u(s) ∥2 ds,

V5(·) =
∫ 0

−h

∫ t

t+s
e2α(v−t) ∥ u(v) ∥2 dvds.

Taking derivative of V1(·) along the trajectory of any
subsystem ith, we have

V̇1 = xT (t)(ĀT
i P + PĀi)x(t) + 2xT (t)PD̄i

×x(t− τ(t)) + 2xTPĒi
∫ t
t−τ(t) x(s)ds

+xT (t)PB̄iu(t) + uT (t)B̄T
i Px(t)

+2xT (t)PC̄iu(t− r(t))

+2xT (t)PF̄i
∫ t
t−r(t) u(s)ds.

(13)
Applying Lemma 5 gives

2xT (t)PD̄ix(t− τ(t))
≤ (1− δ)e−2αh ∥ x(t− τ(t)) ∥2

+(1− δ)−1e2αhxT (t)PD̄iD̄
T
i Px(t),

(14)

2xP (t)PĒi
∫ t
t−τ(t) x(s)ds

=
∫ t
t−τ(t) 2x

T (t)PĒix(s)ds

≤
∫ t
t−τ(t) e

2αhxT (t)PĒiĒ
T
i Px(t)ds

+
∫ t
t−τ(t) e

−2αh ∥ x(s) ∥2 ds
≤ he2αhxT (t)PĒiĒ

T
i Px(t) + e−2αh

×
∫ 0
−h ∥ x(t+ s) ∥2 ds,

(15)

2xT (t)PC̄iu(t− r(t))
≤ (1− δ1)e

−2αh ∥ u(t− r(t)) ∥2
+(1− δ1)

−1e2αhxT (t)PC̄iC̄
T
i Px(t),

(16)

2xT (t)PF̄i
∫ t
t−r(t) u(s)ds

=
∫ t
t−r(t) 2x

T (t)PF̄iu(s)ds

≤
∫ t
t−r(t) e

2αhxT (t)PF̄iF̄
T
i Px(t)ds

+
∫ t
t−r(t) e

−2αh ∥ u(s) ∥2 ds
≤ he2αhxT (t)PF̄iF̄

T
i Px(t)

+e−2αh
∫ 0
−h ∥ u(t+ s) ∥2 ds.

(17)

Therefore, let µ = (1− δ)−1, µ1 = (1− δ1)
−1, from

(13) to (17) we have

V̇1 ≤ xT (t)[ĀiP + PĀi

+ P (B̄iB
T
i +BiB̄

T
i )P ]x(t)

+ (1− δ)e−2αh ∥ x(t− τ(t)) ∥2

+ e−2αh
∫ 0
−h ∥ x(t+ s) ∥2 ds

+ (1− δ1)e
−2αh ∥ u(t− r(t)) ∥2

+ e−2αh
∫ 0
−h ∥ u(t+ s) ∥2 ds

+ e2αhxT (t)P (µD̄iD̄
T
i + hĒiĒ

T
i

+ µ1C̄iC̄
T
i + hF̄iF̄

T
i )Px(t).

(18)

WSEAS TRANSACTIONS on MATHEMATICS Fengwei Yang, Yali Dong

E-ISSN: 2224-2880 259 Issue 3, Volume 12, March 2013



Next, taking derivative of Vi, i = 2, 3, 4, 5, re-
spectively, along the system trajectories yield

V̇2 ≤ ∥ x(t) ∥2 −(1− δ)e−2αh ∥ x(t− τ(t)) ∥2
−2αV2,

V̇3 ≤ h ∥ x(t) ∥2 −e−2αh
∫ 0
−h ∥ x(t+ s) ∥2 ds

−2αV3,

V̇4 ≤ ∥ u(t) ∥2 −(1− δ1)e
−2αh ∥ u(t− r(t)) ∥2

−2αV4,

V̇5 ≤ h ∥ u(t) ∥2 −e−2αh
∫ 0
−h ∥ u(t+ s) ∥2 ds

−2αV5,
(19)

From(18) and (19), it yields that

V̇ (x(t)) + 2αV (x(t)) ≤ xT (t)[ĀT
i P + PĀi

+P (B̄iB
T
i +BiB̄

T
i )P + 2αP ]x(t)

+(1 + h) ∥ x(t) ∥2 +(1 + h) ∥ u(t) ∥2
+e2αhxT (t)P (µD̄iD̄

T
i + hĒiĒ

T
i

+µ1C̄iC̄
T
i + hF̄iF̄

T
i )Px(t).

(20)
From (2), we have

xT (t)PD̄iD̄
T
i Px(t) = xT (t)P (DiD

T
i +MiJi

×(DiN
T
Di)

T +DiN
T
DiJ

T
i M

T
i )Px(t)

+xT (t)PMiJiNDiN
T
DiJ

T
i M

T
i Px(t)

≤ xT (t)P (DiD
T
i +MiJi(DiN

T
Di)

T

+DiN
T
DiJ

T
i M

T
i )Px(t) + λ0λ1x

T (t)P 2x(t)
= xTP (DiD

T
i +MiJi(DiN

T
Di)

T

+DiN
T
DiJ

T
i M

T
i + λ0λ1I)Px(t),

(21)
where

λ0 = max
i∈N̄

{η2(Mi)},

λ1 = max
i∈N̄

{η2(NDi)}.

Similarly, for

xT (t)PĒiĒ
T
i Px(t), xT (t)PC̄iC̄

T
i Px(t)

and xT (t)PF̄iF̄
T
i Px(t), we have

xT (t)PĒiĒ
T
i Px(t) ≤ xTP (EiE

T
i +MiJi

×(EiN
T
Ei)

T + EiN
T
EiJ

T
i M

T
i + λ0λ2I)Px(t),

(22)
xT (t)PC̄iC̄

T
i Px(t) ≤ xTP (CiC

T
i +MiJi

×(CiN
T
Ci)

T + CiN
T
CiJ

T
i M

T
i + λ0λ3I)Px(t),

(23)
xT (t)PF̄iF̄

T
i Px(t) ≤ xTP (FiF

T
i +MiJi

×(FiN
T
Fi)

T + FiN
T
FiJ

T
i M

T
i + λ0λ4I)Px(t),

(24)
where

λ2 = max
i∈N̄

{η2(NEi)},

λ3 = max
i∈N̄

{η2(NCi)},

λ4 = max
i∈N̄

{η2(NFi)}.

From (9), we have

∥ u(t) ∥2= xT (t)PBiB
T
i Px(t). (25)

And from x(t) ∈ Ω̄i and the definition of Ω̄i, it fol-
lows that

xT (t)(AT
i P+PAi+(1+h)I)x(t) < −xT (t)Qix(t),

then we obtain

V̇ (x(t)) + 2αV (x(t))

≤ xT (t)(2αP −Qi + λ0e
2αh(λ1µ+ λ2h

+ λ3µ1 + λ4h)P
2 + P (µe2αhDiD

T
i + h

× e2αhEiE
T
i + µ1e

2αhCiC
T
i + he2αhFiF

T
i

+ (h+ 3)BiB
T
i )P + [PMi µe2αhPMi

he2αhPMi he2αhPMi µ1e
2αhPMi PMi]Ji

× [NT
Ai DiN

T
Di EiN

T
Ei FiN

T
Fi CiN

T
Ci

(NBiB
T
i P )T ]T + [NT

Ai DiN
T
Di EiN

T
Ei

FiN
T
Fi CiN

T
Ci (NBiB

T
i P )T ]Ji

× [PMi µe2αhPMi he2αhPMi he2αhPMi

µ1e
2αhPMi PMi]

T )x(t).

Thus, we get

V̇ (x(t)) + 2αV (x(t)) ≤ xT (t)[Gi(P ) +WiJiS
T
i

+ SiJ
T
i W

T
i ]x(t),

where Gi(P ),Wi, Si are defined by (8), (6), (7), re-
spectively. Applying Lemma 7, matrix inequality (5)
implies

Gi(P ) + ε−1
i WiW

T
i + εiSiS

T
i < 0. (26)

Using Lemma 6, we then have

Gi(P ) +WiJiS
T
i + SiJ

T
i W

T
i < 0.

Hence,

V̇ (x(t)) + 2αV (x(t)) ≤ 0, t ≥ 0. (27)

Using the expression of V (x(t)) and estimation (27),
we get

λmin(P ) ∥ x(t) ∥2≤ V (x(t)) ≤ V (x(0))e−2αt,

where the estimate of V (x(0)) is easily verified by

V (x(0)) ≤ [λmax(P ) + τ̄ + 1
2h

2 + r̄λBλ
2
max(P )

+ 1
2h

2λBλ
2
max(P )] ∥ ϕ ∥2 .
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Therefore,

∥ x(t) ∥≤ qe−αt ∥ ϕ ∥, ∀t ≥ 0,

where q is defined by(10). This completes the proof.
⊓⊔

Remark 9 In [7], the problem of exponential stabi-
lization for a class of linear systems with time-varying
delay is studied, and this system contains only a time
delay in the state. But, in this paper we deal with
the global exponential stabilization for a class of un-
certain switched nonlinear systems, and our system
contains with time-varying delay in both the state and
control. So, our results have a greater range of appli-
cation.

If

Mi = 0, NAi = 0, NBi = 0, NCi = 0,

NDi = 0, NEi = 0, NFi = 0,

then the systems (1) can be written as

ẋ(t) = Aσx(t) +Dσx(t− τ(t)) + Eσ
∫ t
t−τ(t)

× x(s)ds+Bσu(t) + Cσu(t− r(t))

+ Fσ
∫ t
t−r(t) u(s)ds,

x(t) = ϕ(t), t ∈ [−h, 0].
(28)

Corollary 10 If for some constant α > 0, there exist
some numbers τi ≥ 0, with

N∑
i=1

τi > 0,

and some positive definite matrices P,Qi ∈ Rn×n

such that the following LMIs hold:

N∑
i=1

τiLi < 0,

Ḡi(P ) < 0, i ∈ N̄ ,

(29)

where

Ḡi(P ) = 2αP −Qi + P (µe2αhDiD
T
i + he2αh

× EiE
T
i + µ1e

2αhCiC
T
i + he2αhFiF

T
i

+ (h+ 3)BiB
T
i )P,

then the switched nonlinear control system (28) is
globally exponentially stabilizable with convergence
rate α > 0. The switching rule is chosen as σ(x(t)) =
i ∈ N̄ whenever x(t) ∈ Ω̄i. The feedback control is

u(t) = BT
σ Px(t), t ≥ 0,

and the solution x(t, ϕ) of the system satisfies

∥ x(t, ϕ) ∥≤ q ∥ ϕ ∥ e−αt, t ∈ R+,

where

q =

√
m

λmin(P )
,

m = λmax(P ) + τ̄ + r̄λBλ
2
max(P )

+ 1
2h

2 + 1
2h

2λBλ
2
max(P ),

λB = max
i∈N̄

{η2(Bi)}.

Proof: Similar to the proof of Theorem 8, Corollary
10 can be proved. ⊓⊔

Moreover, if Ei = 0, Bi = 0, Ci = 0, Fi = 0,
then the system (28) can be written as

ẋ(t) = Aσx(t) +Dσx(t− τ(t)),
x(t) = ϕ(t), t ∈ [−h, 0].

(30)

We can get the following corollary.

Corollary 11 If for some constant α > 0, there exist
some numbers τi ≥ 0, with

N∑
i=1

τi > 0,

and some positive definite matrices P,Qi ∈ Rn×n

such that the following LMIs hold:
N∑
i=1

τiLi < 0,

G̃i(P ) =

[ Γi PDi

∗ −(1− δ)e−2ατ̄I

]
< 0, i ∈ N̄ ,

(31)
where

Γi = 2αP −Qi − τ̄ I,

then the switched system (30) is globally exponentially
stable with convergence rate α > 0. The switching
rule is chosen as σ(x(t)) = i ∈ N̄ whenever x(t) ∈
Ω̄i, and the solution x(t, ϕ) of the system satisfies

∥ x(t, ϕ) ∥≤ q ∥ ϕ ∥ e−αt, t ∈ R+,

where
q =

√
m1

λmin(P ) ,

m1 = λmax(P ) + τ̄ .

Proof: We consider the following Lyapunov-
Krasovskii functional

V (x(t)) =
∫ t
t−τ(t) e

2α(s−t) ∥ x(s) ∥2 ds

+xT (t)Px(t).

The proof is similar to that for Theorem 8 and is omit-
ted here.
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4 Numerical examples
Example 12 Consider the following switching system

ẋ(t) = Aix(t) +Dix(t− τ(t)) + Ei
∫ t
t−τ(t)

×x(s)ds+Biu(t) + Ciu(t− r(t))

+Fi
∫ t
t−r(t) u(s)ds,

(32)
where

i = 1, 2, τ(t) = 0.5 sin2 t, r(t) = 0.5 cos2 t,

and

A1 =

[
3 1
0 −22

]
, A2 =

[
−15 0
−1 1

]
,

D1 =

[
1 1
0 2

]
, D2 =

[
1 0
1 −1

]
,

E1 =

[
0 1
1 0

]
, E2 =

[
1 −1
1 0

]
,

B1 =

[
1
0

]
, B2 =

[
0
1

]
,

C1 =

[
1
0

]
, C2 =

[
1
1

]
,

F1 =

[
−1
1

]
, F2 =

[
1
−1

]
.

It is easy to check that both Ai and Ai + Di, i =
1, 2, are unstable matrices. Moreover, neither system
(Ai, Bi), i = 1, 2, nor (Ai + Di, Bi), i = 1, 2, are
controllable systems. However, for α = 0.5 and by
fixing τ1 = 0.4, τ2 = 0.6, Corollary 10 is feasible us-
ing LMI toolbox of Matlab. Therefore, the switched
system (32) is exponentially stabilizable with the rate
α = 0.5. The LMIs (29) in Corollary 10 are satisfied
with

P =

[
0.2 −0.02

−0.02 0.1885

]
,

Q1 =

[
1.1185 −0.0544
−0.0544 1.1063

]
,

Q2 =

[
1.0557 −0.0766
−0.0766 1.0409

]
.

It is easy to check that the system of matrices
{L1, L2}, where

L1 =

[
3.8187 0.5265
0.5265 −5.5946

]
,

L2 =

[
−3.4053 0.0186
0.0186 2.9118

]
,

are strictly complete. The set Ω1 and Ω2 are defined
as

Ω1 = {(x1, x2) ∈ R2 : 3.8187x21

+1.053x1x2 − 5.5946x22 < 0},

Ω2 = {(x1, x2) ∈ R2 : −3.4053x21

+0.0372x1x2 + 2.9118x22 < 0},
which can be represented in Fig.1.

It is seen that

Ω1 ∪ Ω2 = R2\{0}.

Therefore, the switching regions are given as

Ω̄1 = {(x1, x2) ∈ R2 : 3.8187x21

+ 1.053x1x2 − 5.5946x22 < 0},

Ω̄2 = {(x1, x2) ∈ R2 : 3.8187x21 + 1.053x1x2

−5.5946x22 ≥ 0, (x, y) ̸= (0, 0)}.
We have that Ω̄1 ∪ Ω̄2 = R2\{0} and Ω̄1

∩
Ω̄2 = ∅.

The switching rule is chosen as σ(x(t)) = i
whenever x(t) ∈ Ω̄i, i = 1, 2, and the state feedback
controller

u(t) = Kix(t), t ≥ 0,

where
K1 = [0.2 − 0.02],

K2 = [−0.02 0.1885],

the system (32) is 0.5-exponentially stabilizable. By
computation we find that every solution x(t, ϕ) of the
closed-loop system satisfies

∥ x(t, ϕ) ∥≤ 2.2499e−0.5t ∥ ϕ ∥, t ≥ 0.

Example 13 Consider the following switching system

ẋ(t) = Aix(t) +Dix(t− τ(t)) +Biu(t)

+ Ciu(t− r(t)),
(33)

where

i = 1, 2, τ(t) ≡ 0.3, r(t) ≡ 0.5

and

A1 =

[
2 1
0 −20

]
, A2 =

[
−10 0
−1 2

]
,

D1 =

[
1 −1
0 10

]
, D2 =

[
5 0
1 −1

]
,

B1 =

[
1
1

]
, B2 =

[
0
2

]
,

C1 =

[
1
0

]
, C2 =

[
2
1

]
,
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Figure 1: Regions of Ω1,Ω2.

For α = 0.6 and by fixing τ1 = 0.4, τ2 = 0.5,
Corollary 10 is feasible using LMI toolbox of Matlab.
Therefore, the switched system (33) is exponentially
stabilizable with the rate α = 0.6. The LMIs (29) in
Corollary 10 are satisfied with

P =

[
0.2063 −0.0037
−0.0037 0.1277

]
,

Q1 =

[
0.1973 −0.3325
−0.3325 1.9796

]
,

Q2 =

[
1.4261 0.1661
0.1661 0.1010

]
.

It is easy to check that the system of matrices
{L1, L2}, where

L1 =

[
7.5 3
3 −36.5

]
,

L2 =

[
−15.5 2

2 8.5

]
,

are strictly complete. The set Ω1,Ω2 are defined as

Ω1 = {(x1, x2) ∈ R2 : 7.5x21

+ 6x1x2 − 36.5x22 < 0},

Ω2 = {(x1, x2) ∈ R2 : −15.5x21

+ 4x1x2 + 8.5x22 < 0}.

We see that
Ω1 ∪ Ω2 = R2\{0}.

Table 1: Comparing the previous results in [31] with
this paper.

Results δ = 0 δ = 0.1 δ = 0.5 δ = 0.9

τ̄ ([31]) 0.0307 0.0271 0.0197 0.0185

τ̄ (Our results) 0.0413 0.0354 0.0254 0.0196

Therefore, the switching regions are given as

Ω̄1 = {(x1, x2) ∈ R2 : 7.5x21

+ 6x1x2 − 36.5x22 < 0},

Ω̄2 = {(x1, x2) ∈ R2 : 7.5x21 + 6x1x2

−36.5x22 ≥ 0, (x, y) ̸= (0, 0)}.

We have that

Ω̄1 ∪ Ω̄2 = R2\{0}.

With the switching rule σ(x(t)) = i whenever x(t) ∈
Ω̄i, i = 1, 2, and the state feedback controller

u(t) = Kix(t), t ≥ 0,

where
K1 = [0.2026 0.1240],

K2 = [−0.0073 0.2554],

the system (33) is 0.6-exponentially stabilizable. By
computation we find that every solution x(t, ϕ) of the
closed-loop system satisfies

||x(t, ϕ)|| ≤ 0.7380e−0.6t ∥ ϕ ∥, t ≥ 0.

Example 14 Consider system (30) with the following
parameters: (Example 3 of [31])

A1 =

[
−2 2
−20 −2

]
, A2 =

[
−2 10
−4 −2

]
,

D1 =

[
−1 −7
23 6

]
, D2 =

[
4 −5
1 −8

]
.

(34)

Set α = 0, τ1 = 0.4, τ2 = 0.5. By Corollary 11,
some comparisons for system (30) with (34) are made.
Table 1 shows that the results of this paper provide a
larger allowable upper bound for time delay to guaran-
tee the global asymptotic stability of system (30) with
(34) by the switching rule σ(x(t)) = i ∈ N̄ . So our
results are provided to have the less conservativeness.
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5 Conclusion
In this paper, the switching signal design for global
exponential stabilization of uncertain switched non-
linear systems with time-varying delays in state and
control has been considered. Switching laws design
and techniques to deal with delay systems are two im-
portant issues about switched delay systems. Based
on the Lyapunov-Krasovskii functional, the delay-
dependent exponential stabilization conditions are de-
rived in terms of linear matrix inequalities. If there is a
feasible solution for the proposed LMI conditions un-
der some given upper bounds of delays, the switching
law can be designed and the exponential stabilization
of systems can be achieved. The obtained results are
show to be less conservative than previous one via the
numerical examples.
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